We encourage you to republish this article online and in print, it’s free under our creative commons attribution license, but please follow some simple guidelines:
  1. You have to credit our authors.
  2. You have to credit SciDev.Net — where possible include our logo with a link back to the original article.
  3. You can simply run the first few lines of the article and then add: “Read the full article on SciDev.Net” containing a link back to the original article.
  4. If you want to also take images published in this story you will need to confirm with the original source if you're licensed to use them.
  5. The easiest way to get the article on your site is to embed the code below.
For more information view our media page and republishing guidelines.

The full article is available here as HTML.

Press Ctrl-C to copy

A cheap professional microscope based on open-source technologies has been developed by a group of engineers at the University of Cambridge in the United Kingdom.

The project is part of the OpenLabTools initiative, aimed at providing a forum and knowledge centre for the development of low-cost and open-access scientific tools.

The idea is to enable research centres all over the world to do work even with a tiny budget. This may be a spur to education and scientific development in countries with limited resources.

The microscope prototype will cost around US$800, whereas conventional microscopes cost between US$15,000 and US$80,000. It will be modular and simple to replicate, improve and adapt to different research purposes, as the instructions will be made available online.

The microscope's electronics are controlled by Raspberry Pi, the US$25 computer launched in 2012 by engineers at the Raspberry Pi Foundation. Originally designed for educational purposes, this computer is the size of a smartphone and has proven to be suitable for a variety of uses, including gaming and research.

"We are not trying to develop a new cutting-edge technology," says Alexandre Kabla, project supervisor at the University of Cambridge. "We want to use tools already available on the market to design new and flexible products. Our aim is to share results and build a community that will progressively make these instruments better."