We encourage you to republish this article online and in print, it’s free under our creative commons attribution license, but please follow some simple guidelines:
  1. You have to credit our authors.
  2. You have to credit SciDev.Net — where possible include our logo with a link back to the original article.
  3. You can simply run the first few lines of the article and then add: “Read the full article on SciDev.Net” containing a link back to the original article.
  4. If you want to also take images published in this story you will need to confirm with the original source if you're licensed to use them.
  5. The easiest way to get the article on your site is to embed the code below.
For more information view our media page and republishing guidelines.

The full article is available here as HTML.

Press Ctrl-C to copy

[BEIJING] Genomics, an emergent technology dealing with genes, is getting cassava scientists excited about the potential of growing more cassava in a much shorter time and much more efficient way.

Scientists believe this root crop — dubbed the “poor man’s crop” — can be the solution to feeding the booming populations of developing nations. But finding investments to fund research and development for the plant has been difficult.

“We need to invest further resources to obtain genome information, to better understand the construction of the genome and to understand what a good cassava variety is.”

By Wilhelm Gruissem, professor at ETH Zurich

Feeding more than 500 million people worldwide, cassava is a carbohydrate source that is considered a staple crop and an important food security component in developing nations.

“Genomics can shorten breeding time to develop cassava varieties much quicker,” Wilhelm Gruissem, plant biotechnology professor at ETH Zurich, tells SciDev.Net.

Genomics uses sequencing to recognise specific genes in the genome, blazing the way for developing new environment-adapted, virus-resistant crop varieties with improved yields in a timely manner.

Gruissem says genomics is especially interesting for breeding new cassava varieties because the plant’s heterozygous parents, organisms with two different alleles of a gene, make the breeding process complex and challenging.

“Genomics technology allows us to breed cassava about three times faster than conventional breeding,” Claude Fauquet, director of the International Laboratory for Tropical Agricultural Biotechnology at The Scripps Research Institute and co-founder of the Global Cassava Partnership for the 21st Century, tells SciDev.Net.

While it typically takes 10-12 years to breed new varieties, with the help of genomics that time can be cut to 3-5 years, Fauquet explains.

“We need to invest further resources to obtain genome information, to better understand the construction of the genome and to understand what a good cassava variety is,” notes Gruissem. “We need to develop different high-yielding, virus-resistant cassava varieties that are adjusted to the preferences of farmers, consumers and industrial customers.”

But due to vegetative propagation — the plant is genetically identical to the parent and grows from parts of the parent plant — cassava has not been economically interesting to seed companies which cannot sell seeds of the plant. It has not found major interest either among developed nations which do not grow and consume the crop.

According to Fauquet, 75 per cent of cassava farmers grow cassava for their own consumption. But only 25 per cent of cassava production is utilised to generate food and non-food products such as starch, sweeteners and plastics.

Yet, the advantages of cassava over other crops are clear: it can sustain long droughts and grow in almost any type of soil. It is highly productive and semi-perennial, which gives it a flexible time window for harvesting.

The crop can be processed into hundreds of different food products and non-food products. The starch quality in cassavas is also much better than the starch quality in corn, says Gruissem.

“From my perspective, national governments have to understand the value and importance of this crop and invest in cassava research, breeding and technology,” he stresses.

Time is of the essence to breed more cassavas much faster. Hans Rosling, a professor at the Karolinska Institutet in Stockholm and the Royal Swedish Academy of Sciences, predicts that the population of Asia will grow 25 per cent while the African continent will see its population double to two billion people by 2050.

This piece was produced by SciDev.Net’s South-East Asia & Pacific desk.