Bringing science and development together through news and analysis

Roach milk inspires food supplement
  • Roach milk inspires food supplement

Copyright: Ltshears / Wikimedia Commons

Speed read

  • Milk produced by a species of cockroach is highly nutritive and can be synthesised using yeast cells

  • Roach milk, turned into protein crystals in roach larvae guts, has thrice the energy in dairy milk

  • Work on bulk production of roach milk protein, using recombinant DNA technology, is underway

Shares
[BANGALORE] Milk secreted by a cockroach species, to feed its young, is the base for a potent nutritional supplement being developed by Indian and international scientists.

“While cockroaches are oviparous (egg-laying animals), the Diploptera punctata species alone is viviparous (animals that give birth to young) and nourishes its offspring with a milk protein,” says Sanchari Banerjee, post-doctoral fellow at the Institute for Stem Cell Biology and Regenerative Medicine (InSTEM), Bangalore, where work is underway to develop the food supplement.

Banerjee and her fellow researchers found that the milk, which the mother cockroach secretes through the brood sac, gets converted into concentrated protein crystals that are stored in the gut of the embryos. They describe their work in a paper published this month (July) in IUCrJ.

“Now that we know the chemical constituents of roach milk, the challenge is to produce the milk in yeast using biotechnology techniques.”

Nitish Sathyanarayanan, InSTEM 

Supported by India’s department of biotechnology, the team has members drawn from diverse institutions such as the Carver College of Medicine, University of Iowa, Department of Cell and Systems Biology, University of Toronto and Experimental Division, Synchrotron SOLEIL, Gif-sur-Yvette, France.

Biophysical and X-ray crystallographic studies of the crystals show that they are composed of a mix of proteins, sugars and fatty acids that make a complete food for the roach brood. A single crystal is estimated to contain more than three times the energy of an equivalent mass of dairy milk.
Says Banerjee: “The crystals that form inside the embryos were fascinating. There is an equilibrium maintained between the liquid milk, which is ready as food, and the crystals which can be stored as food.”

Subramaniam Ramaswamy, professor at InSTEM, tells SciDev.Net that the road to converting the crystals into a nutritional supplement is long. “We need to make it in yeast and make sure it can have the same properties. We need to make sure it is safe. We need to figure out how to make enough of it. So, that is a few years away.”

Nitish Sathyanarayanan, doctoral student at InSTEM and an author of the paper, says the process is similar to making synthetic insulin using recombinant DNA technology. “The insulin that we consume today is made in the same yeast used for baking. Now that we know the chemical constituents of roach milk, the challenge is to produce the milk in yeast using biotechnology techniques.”

Banerjee has already begun making the protein in yeast cells. “We have now synthesised the gene sequences. It will take some time to check if it is working or not with the same native properties. If everything works, we will plan to market it as supplemental food,” she says.

This piece was produced by SciDev.Net’s South Asia desk.
Republish
We encourage you to republish this article online and in print, it’s free under our creative commons attribution license, but please follow some simple guidelines:
  1. You have to credit our authors.
  2. You have to credit SciDev.Net — where possible include our logo with a link back to the original article.
  3. You can simply run the first few lines of the article and then add: “Read the full article on SciDev.Net” containing a link back to the original article.
  4. If you want to also take images published in this story you will need to confirm with the original source if you're licensed to use them.
  5. The easiest way to get the article on your site is to embed the code below.
For more information view our media page and republishing guidelines.